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achieved through digital signal averaging, which is more

complicated and expensive to arrange than the simple

analogue smoothing used in the slow-scan method.

Ultimately in practice however, the success of each

method hinges on the best detector available. Thus in the

energy limited far infrared, where the Golay detector is

still the most sensitive room temperature device available,

the slow-scan method appears to have the edge over the

rapid-scan method, as evidenced by the quality of spectra

which have to date been recorded by commercial instru-

ments. In the midinfrared, where characteristically higher

energy sources are available, the lower sensitivity of the

pyroelectric detector is less critical, and is more than

compensated for by the advantages afforded by the rapid-

scan method.
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High-Resolution Submillimeter-Wave Fourier-Transform

SPectrometrY of Gases

J. W. FLEMING

Absfracf—Modem interferometric tec~lques now permit the

measurement of broad-band absorption spectra of gases at sub-

rnilfimetric wavelengths to high resolution with comparative ease.

This paper describes briefly some new spectra of H.zO, N,O, and

SO, in the 10-40 cm-l (0.33 to 1.4 THz) region, at a resolution

of 0.05 cm–l.

I~TRODUCTION

H IGH-RESOLUTION broad-band spectrometry in

the submillirnetric region can be achieved most

readily using the technique of Fourier-transform spec-

trometry [1], [2]. Providing particular attention is paid

to certain key points, then fairly simple and cheap in-

strumentation is capable of resolutions better than 0.1

cm-l below 100 cm-l. We show in this paper how a simple
Michelson two-beam interferometer is used to record

spectra at a nominal resolution of 0.05 cm-l in the 10–40

cm-l (0.33–1.4 THz) region. The data obtained are of
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particular importance in studies of the submillimetric-

wave properties of the earth’s stratosphere.

EXPERIMENTAL

The instrumentation used was the NPL-Grubb Parsonsl

cube interferometer; phase modulation [3] of the radiation

was employed. The detector was a” liquid-helium-cooled

Rollin-t ype of photoconductor. This, together with the

transmission characteristics of the interferometer, re-

stricted the spectral bandpass to the region l&40 cm-l.

The gases were contained in a single-pass absorption cell

fitted with TPX windows; path lengths of 933 mm and
Z03 ~ were used. Single-sided inter ferograms were

observed up to a maximum optical path difference of

100 mm, which corresponds after transformation to a

nominal unanodized resolution of 0.05 cm-l. A step-

recording technique with a sampling interval of 40 pm

was used, and, with an amplifier time constant of 300 ms,
the total recording time for a single interferogram was

about 50 min. The signal-to-noise ratio in the analog-

output signal was 2000:1, and this was then sampled by a

~Sir Howard Grubb Parsons & Co. Ltd., Walkergate, Newcastle-
upon-Tyne, England.
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digital voltmeter with a discrimination of 1 part in 20000.

True transmission spectra were obtained by calculating

the ratio of twospectra with and without the absorbing

gas in the cell,

RESULTS AND DISCUSSION

Inorder to beableto use laboratory data of the type

shown here to look for unidentified components in mix-

tures of gases, it is important to accurately measure

absorption peak positions. We have already discussed

[4] in detail the size of the wavenumber contractions

which are well known [5] to occur in Fourier-transform

spectrometry, and we showed how it was possible to obtain

a good calibration of the wavenumber scale given by a

particular interferometer by recording the absorption

spectrum of carbon monoxide (CO).. ‘We have compared

the performance of an uncollimated interferometer and

one in which additional collimating optics had been

incorporated. The contraction observed ‘depends upon

the degree of collimation in the interferometer, but it is

perfectly satisfactory to separately calibrate and then to

intercompare results.

As an example of the precision attainable now in the

submillimetric region, we list in Table I some peak absorp-

tion positions for nitrous oxide PiTzO (200 torr, 203-mm

TABLE I

ROTATIONAL ABSORPTION LINE POSITIONS (CM–’) NITROUS OXIDE

Collimated ~ Uncollimated Calculaiml

path length), recorded with the two interferometers. The

mean of three collimated spectra is shown in Fig. 1. It is

clearly seen that the wavenumber contractions are of very

significant size when compared with the estimated preci-

sion +0.003 cm-l in the measurements. The empirical

corrections derived from CO measurements are

collimated T$,.. = ~Ob~X 1.00035

uncollimated ~~,a, = ~ob, X 1.00104

and the results of applying these are compared in the

table with positions given by Rao et al. [6]. The differences

which occur are seen to be rarely greater than *0.003

cm+. However, in several other runs, both on N20 and

NO, we have found that it is possible for unaccountable

systematic wavenumber shifts up to +0.01 cm-l to be

present. For this reason, the absolute accuracy of our

measurements should be regarded as +0.01 cm-l.

It is only possible to achieve results of this quality

when the signal-to-noise ratio in the spectra is high. That

this ratio is, in fact, high can be seen from a typical single

absorption spectrum of water vapor (18 torr, 203-mm

path length) shown in Fig. 2. It is noticeable that the

noise tends to increase towards the two extremities of

the spectrum. This is due to a reduction in the energy

reaching the detector because of the transmission charac-

teristics of the interferometer. In this. spectrum it @

particularly interesting to note the weak feature at 37.91’3

cm-l. Although not reported in comparable HZO spectra

in the literature [7], [8], it is certainly reproducible. We
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Fig. 1. Rotational absorption spectrum of nitrous oxide (N,O).
200 torr, path length 203 mm. Mean of three runs.
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Fig. 2. Rotational absorption spectrum of water vapor. 18-torr,’
path length 203 mm.
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hope to ascertain in the near future i it is an absorption
feature due to an isotopic form of H~O.

Many of the gases of interest in atmospheric (or strato-

spheric) work are asymmetric rotor molecules, and have

very complicated absorption spectra. We report here some

completely new results on sulfur dioxide (S0.2). Previous

work on this molecule has been reported by Gebbie et al.

[9] at 70 cm-l and higher, Stone [10] has reported ab-

sorption contours between 16 and 80 cm-l at a resolution

of 0.25 cm-l, and Gora [11] has performed calculations

based on a rigid rotor approx~.ation in an attemPt to

explain the observed substructure. Fig. 3 shows a portion

of the rotational absorption spectrum between 25 and

40 cm-l (18.5 torr, 933-mm path-length uncollimated

interferometer). A great wealth of fine structure is now

resolved, and presents formidable assignment problems !

In the earlier reported work, on average only four absorp-

tion peaks were resolved in between the ~very intense Q

subbranch bands. The Q subbranch band centers lie at

25.34, 28.78, 32.11, 35.45, and 38.77 cm-l. Gora showed

that it was possible to account for the structure observed

at low resolution in terms of narrow groups of hlghJ–

1ow-K transitions forming multiples, which, being un-

resolved, tended to be the strongest absorption features

between the Q subbranches. At higher resolution, it is

clear that a more complete calculation of expected struc-

ture is required. Fig. 4 shows the spectral region between

28.3 and 32.4 cm-l taken from Fig. 3 and expanded. Above

the observed contour are plotted as a line spectrum some

of the stronger transitions taken from more complete

calculations by Gora [12]. While there is a considerable

measure of agreement, it is apparent that the higher

resolution data should now encourage a start on more

retied calculations.
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Fig. 3. Rotational absorption spectrum of sulfur dioxide (SQ).
18.5 torr, path length 933 mm.
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Fig. 4. 28.3–32.4 cm–l region of Fig. 3 (S02). Calculated transitions
due to Gora [12].

CONCLUSIONS

Improved techniques in submillimeter-wave Fourier-

transform spectrometry now permit the very precise

measurement of the absorption spectra of gases. Inter-

ferometer performance with respect to wavenumber

accuracy has been shown to be satisfactory to +0.01

‘l. New spectroscopic measurements on sulfur dioxidecm

are shown; the improved resolution now available points

to the desirability of performing better calculations of the

expected absorption contours.
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